播放中国国产国语纯一级黄片免费看, 大鸡吧快来啊阿啊阿啊黄片在线播放, 中文精品日韩网站在线观看视频免费, 别揉我奶头~嗯~啊~一区二区三区,AV无码播放一级毛片免费古装,亚洲春色一区二区三区,91大神极品,美国一级大黄一片免费下载,午夜爽爽爽男女免费观看软件

Welcome to LookChem.com Sign In|Join Free

CAS

  • or
2-Propenylphenol, also known as allylcatechol, is an organic compound that features a phenol group with a propenyl side chain. It is known for its ability to undergo various chemical reactions, including the formation of spiropyran derivatives.

6380-21-8

Post Buying Request

6380-21-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

6380-21-8 Usage

Uses

Used in Photochromic Applications:
2-Propenylphenol is used as a precursor in the synthesis of spiropyran compounds for photochromic applications. When 2-propenylphenol reacts with 2,3-dichloro-5,6-dicyanobenzoquinone, it forms a spiropyran, which is a type of photochromic molecule that can undergo reversible color changes upon exposure to light. This property makes spiropyrans useful in various applications, such as smart windows, optical data storage, and molecular switches.
Used in Chemical Synthesis:
2-Propenylphenol serves as a versatile intermediate in the synthesis of various organic compounds. Its reactivity and functional groups make it a valuable building block for the production of pharmaceuticals, agrochemicals, and other specialty chemicals. Its ability to participate in a wide range of chemical reactions, such as electrophilic aromatic substitution, nucleophilic addition, and oxidation, allows for the creation of diverse chemical structures with potential applications in various industries.

Check Digit Verification of cas no

The CAS Registry Mumber 6380-21-8 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 6,3,8 and 0 respectively; the second part has 2 digits, 2 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 6380-21:
(6*6)+(5*3)+(4*8)+(3*0)+(2*2)+(1*1)=88
88 % 10 = 8
So 6380-21-8 is a valid CAS Registry Number.
InChI:InChI=1/C9H10O/c1-2-5-8-6-3-4-7-9(8)10/h2-7,10H,1H3/b5-2+

6380-21-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-PROPENYLPHENOL

1.2 Other means of identification

Product number -
Other names 2-propenyl-pheno

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:6380-21-8 SDS

6380-21-8Relevant articles and documents

Ruthenium Removal Using Silica-Supported Aromatic Isocyanides

Gregg, Zackary R.,Glickert, Elise,Xu, Ruoshui,Diver, Steven T.

supporting information, (2021/05/13)

New silica gel scavengers containing aromatic isocyanides have been synthesized and evaluated for Ru removal. A thiol-ene click reaction was used to attach the isocyanide precursor to a thiol-containing siloxane. Conventional methods for grafting to silica gel at elevated temperature resulted in significant hydrolysis of the isocyanide. A novel cleavage reaction was developed to quantitate the amount of surface-loaded isocyanide. Binding by the new materials was comparatively evaluated for a variety or Ru carbene catalysts. The optimal conditions were extended to two ring-closing metatheses (RCM). The residual Ru was determined by inductively coupled plasma mass spectrometry (ICP-MS). For facile RCM reactions, the UV data agreed with the ICP-MS results. However, more difficult RCM did not correlate well with the UV data. This was interpreted in terms of varying extent of catalyst decomposition. In all cases, isocyanide scavenger reagents were found to be superior to commonly used, silica gel-based metal scavengers.

Bioinspired Selective Synthesis of Heterodimer 8-5′ or 8- O-4′ Neolignan Analogs

Dong, Kui,Zhao, Chuang-Yuan,Wang, Xiao-Ju,Wu, Li-Zhu,Liu, Qiang

supporting information, p. 2816 - 2820 (2021/04/13)

The bioinspired synthesis of heterodimer neolignan analogs is reported by single-electron oxidation of both alkenyl phenols and phenols individually, followed by a combination of the resultant radicals. This oxidative radical cross-coupling strategy can afford heterodimer 8-5′ or 8-O-4′ neolignan analogs selectively with the use of air as the terminal oxidant and copper acetate as the catalyst at room temperature.

Cascade Claisen and Meinwald Rearrangement for One-Pot Divergent Synthesis of Benzofurans and 2 H-Chromenes

Song, Liyan,Su, Qian,Lin, Xi,Du, Zhihui,Xu, Huiyou,Ouyang, Ming-An,Yao, Hongliang,Tong, Rongbiao

, p. 3004 - 3009 (2020/04/20)

A new cascade approach has been developed for the one-pot four-step divergent synthesis of polysubstituted benzofurans and 2H-chromenes, featuring a novel cascade aromatic Claisen rearrangement/Meinwald rearrangement/dehydrative or oxidative cyclization. This new method was demonstrated with 39 examples tolerating different substitutions at an epoxide, allylic ether, and aromatic ring, and we showcased its utility with the first total synthesis of natural product liparacid A in seven steps.

Hydrophilic (ν6-Arene)-Ruthenium(II) Complexes with P-OH ligands as catalysts for the isomerization of allylbenzenes and C-H bond arylation reactions in water

González-Fernández, Rebeca,Crochet, Pascale,Cadierno, Victorio

, p. 3696 - 3706 (2019/10/11)

Half-sandwich ruthenium(II) complexes containing ν6-coordinated 3-phenylpropanol and phosphinous-acid-type ligands, namely, [RuCl2(ν6-C6H5CH2CH2CH2OH){P(OH)R2}] (R = Me (2a), Ph (2b), 4-C6H4CF3 (2c), 4-C6H4OMe (2d), OMe (2e), OEt (2f), and OPh (2g), have been synthesized in 44-88% yield by reacting [RuCl2{ν6:κ1(O)-C6H5CH2CH2CH2OH}] (1) with the appropriate pentavalent phosphorus oxide R2P(═O)H. The structure of [RuCl2(ν6-C6H5CH2CH2CH2OH){P(OH)Me2}] (2a) was unequivocally confirmed by X-ray diffraction methods. Compounds 2a-g proved to be catalytically active in the isomerization of allylbenzenes into the corresponding (1-propenyl)benzene derivatives employing water as the sole reaction solvent, with [RuCl2(ν6-C6H5CH2CH2CH2OH){P(OH)(OPh)2}] (2g) showing the best performance and a broad substrate scope (73-93% isolated yields with E/Z ratios around 90:10 employing 1 mol % of 2g and 3 mol % of K2CO3, and performing the catalytic reactions at 80 °C for 4-24 h). The results herein presented show for the first time the utility of phosphinous acids as auxiliary ligands for metal-catalyzed olefin isomerization processes, reactions in which a cooperative role for the P - OH unit is proposed. On the other hand, the utility of complexes 2a-g as catalysts for ortho-arylation reactions of 2-phenylpyridine in water is also briefly discussed.

Selective Synthesis of Primary Anilines from NH3 and Cyclohexanones by Utilizing Preferential Adsorption of Styrene on the Pd Nanoparticle Surface

Koizumi, Yu,Jin, Xiongjie,Yatabe, Takafumi,Miyazaki, Ray,Hasegawa, Jun-ya,Nozaki, Kyoko,Mizuno, Noritaka,Yamaguchi, Kazuya

supporting information, p. 10893 - 10897 (2019/07/12)

Dehydrogenative aromatization is one of the attractive alternative methods for directly synthesizing primary anilines from NH3 and cyclohexanones. However, the selective synthesis of primary anilines is quite difficult because the desired primary aniline products and the cyclohexanone substrates readily undergo condensation affording the corresponding imines (i.e., N-cyclohexylidene-anilines), followed by hydrogenation to produce N-cyclohexylanilines as the major products. In this study, primary anilines were selectively synthesized in the presence of supported Pd nanoparticle catalysts (e.g., Pd/HAP, HAP=hydroxyapatite, Ca10(PO4)6(OH)2) by utilizing competitive adsorption unique to heterogeneous catalysis; in other words, when styrene was used as a hydrogen acceptor, which preferentially adsorbs on the Pd nanoparticle surface in the presence of N-cyclohexylidene-anilines, various structurally diverse primary anilines were selectively synthesized from readily accessible NH3 and cyclohexanones. The Pd/HAP catalyst was reused several times though its catalytic performance gradually declined.

Synthesis of Benzofuranones via Palladium-Catalyzed Intramolecular Alkoxycarbonylation of Alkenylphenols

Hirschbeck, Vera,Fleischer, Ivana

supporting information, p. 2854 - 2857 (2018/02/06)

Herein, a new catalytic system to synthesize benzofuranones is reported. A palladium-catalyzed intramolecular alkoxycarbonylation is employed to generate 3-substituted-benzofuran-2(3H)-ones from alkenylphenols under mild reaction conditions, linked to an ex situ formation of CO from N-formylsaccharin. The carefully chosen catalytic system enables an efficient reaction with a novel functional group tolerance, despite the high polymerization tendency of the starting material.

Conformational Control of Initiation Rate in Hoveyda-Grubbs Precatalysts

Gregg, Zackary R.,Griffiths, Justin R.,Diver, Steven T.

supporting information, p. 1526 - 1533 (2018/06/04)

When the coordinating isopropyl ether of the Hoveyda precatalyst is replaced by a cyclohexyl ether, it is possible to control the substituent's conformation in either the equatorial or axial position. A stereodivergent synthesis of axial and equatorial cyclohexyl vinyl ethers provided access to new ruthenium metathesis precatalysts by carbene exchange. The conformational disposition of the coordinating aryl ether was found to have a significant effect on the reactivity of the precatalyst in alkene metathesis. The synthesis of four new Ru carbene complexes is reported, featuring either the 1,3-bis(2,4,6-trimethylphenyl)dihydroimidazolylidene (H2IMes) or the 1,3-bis(2,6-diisopropylphenyl)dihydroimidazolylidene (SIPr) N-heterocyclic carbene ligand. The conformational isomers in the SIPr series were structurally characterized. Performance testing of all new precatalysts in three different ring-closing metatheses and an alkene cross metathesis illustrated superior performance by the precatalysts bearing axial coordinating ethers. Initiation rates with butyl vinyl ether were also measured, providing a useful comparison to existing Hoveyda-type metathesis precatalysts. Use of conformational control of the coordinating ether substituent provides a new way to modulate reactivity in this important class of alkene metathesis precatalysts.

A General Strategy for Open-Flask Alkene Isomerization by Ruthenium Hydride Complexes with Non-Redox Metal Salts

Lv, Zhanao,Chen, Zhuqi,Hu, Yue,Zheng, Wenrui,Wang, Haibin,Mo, Wanling,Yin, Guochuan

, p. 3849 - 3859 (2017/09/18)

A homogenous metal hydride (M?H) catalyst for isomerization normally requires rigorous air-free techniques. Here, we demonstrate a highly efficient protocol in which simple non-redox metal ions as Lewis acids can promote olefin isomerization dramatically with a commercially available RuH2(CO)(PPh3)3 complex in an open-flask system. Isomerization can be accomplished within a short time, and a satisfactory selectivity for different types of unsaturated compounds can be obtained. Meanwhile, an excellent turnover number up to 17208 was achieved under air, and open-flask gram-scale experiments further demonstrated the efficiency of the RuH2(CO)(PPh3)3/non-redox-metals system. We used FTIR spectroscopy, GC–MS, NMR spectroscopy and kinetics studies to evidence that in the sluggish RuH2(CO)(PPh3)3 catalyst, bloated PPh3 ligands cause steric hindrance for the coordination of the free alkene. Alternatively, the addition of non-redox metal ions could induce the dissociation of the PPh3 ligand to offer unoccupied coordination sites for the alkene and to form the Mg-bridged adduct OC?Ru?H2?Mg2+ as the highly active species, which benefited the isomerization significantly through the metal hydride addition–elimination pathway. Finally, this strategy was demonstrated as an impactful approach for hydride catalysts of other transition metals such as Os.

Chelating carbene ligand precursors and their use in the synthesis of metathesis catalysts

-

Page/Page column 9, (2016/12/22)

Chelating ligand precursors for the preparation of olefin methathesis catalysts are disclosed. The resulting catalysts are air stable monomeric species capable of promoting various methathesis reactions efficiently, which can be recovered from the reaction mixture and reused. Internal olefin compounds, specifically beta-substituted styrenes, are used as ligand precursors. Compared to terminal olefin compounds such as unsubstituted styrenes, the beta-substituted styrenes are easier and less costly to prepare, and more stable since they are less prone to spontaneous polymerization. Methods of preparing chelating-carbene methathesis catalysts without the use of CuCl are disclosed. This eliminates the need for CuCl by replacing it with organic acids, mineral acids, mild oxidants or even water, resulting in high yields of Hoveyda-type methathesis catalysts. The invention provides an efficient method for preparing chelating-carbene metathesis catalysts by reacting a suitable ruthenium complex in high concentrations of the ligand precursors followed by crystallization from an organic solvent.

One-Step Synthesis of Substituted Benzofurans from ortho- Alkenylphenols via Palladium-Catalyzed C=H Functionalization

Yang, Dejun,Zhu, Yifei,Yang, Na,Jiang, Qiangqiang,Liu, Renhua

supporting information, p. 1731 - 1735 (2016/06/09)

A dehydrogenative oxygenation of C(sp2)=H bonds with intramolecular phenolic hydroxy groups has been developed, which provides a straightforward and concise access to structurally diversely benzofurans from ortho-alkenylphenols. The reaction is catalyzed by palladium on carbon (Pd/C) without any oxidants and sacrificing hydrogen acceptors.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 6380-21-8