1527-89-5Relevant articles and documents
Increasing the scope of palladium-catalyzed cyanations of aryl chlorides
Schareina, Thomas,Jackstell, Ralf,Schulz, Thomas,Zapf, Alexander,Cotte, Alain,Gotta, Matthias,Beller, Matthias
, p. 643 - 648 (2009)
An improved protocol for the palladium-catalyzed cyanation of electron-rich aryl chlorides with potassium ferrocyanide [K4[Fe(CN)6]] is presented. Compared to previous procedures the substrate scope is significantly broadened.
Photocyanation of Anisole in the Presence of Polyethylene Glycol
Suzuki, Nobutaka,Shimazu, Kazuo,Ito, Toshikuni,Izawa, Yasuji
, p. 1253 - 1255 (1980)
Polyethylene glycol can replace crown ether as a co-solvent in the photochemical substitution reaction of anisole with KCN in CH2Cl2.
Synthesis of low molecular weight compounds with complement inhibition activity
Master, Hoshang E.,Khan, Shabana I.,Poojari, Krishna A.
, p. 1249 - 1251 (2003)
An attempt was made to synthesize a series of non-cytotoxic low molecular weight meta-substituted aromatic ethers (2-4, 5-7) and some of their bioisosteres (14-16) and to evaluate their activity on the activation of human complement (classical pathway) and their intrinsic hemolytic activity. The in vitro assay results of the inhibition of complement-mediated hemolysis by these analogues indicate that the aldehydic meta substituted aromatic ethers show inhibitory potency, while carboxylic acid meta substituted aromatic ethers show hemolytic activity. Some of the bioisosteres exhibit both inhibitory as well as hemolytic property.
Highly dispersed Co species in N-doped carbon enhanced the aldehydes ammoxidation reaction activity
Fu, Wenqian,Pan, Liuming,Tang, Tiandi,Wang, Siming,Zhang, Lei
, (2022/01/04)
Developing environmentally friendly catalysts with high activity for the ammoxidation of aromatic aldehydes to aromatic nitriles is greatly important for this industrial transformation. Herein, natural vitamin B12 was used as a carbon source for the preparation of a cobalt- and nitrogen-doped catalyst precursor, which was pyrolyzed at different temperatures to obtain cobalt- and nitrogen-doped carbon (Co@NC-T) (T denotes pyrolysis temperature) catalysts. The Co@NC-800 exhibited excellent activity and selectivity in the ammoxidation of aromatic aldehydes with ammonium carbonate to aromatic nitriles compared to the Co@NC-700, Co@NC-600 and Co@NC-500 catalysts. The high catalytic performance of Co@NC-800 could be due to the presence of the low-density electron cloud of the highly dispersed Co species, which could interact with the benzene ring of benzaldehyde bearing p-π conjugate, thereby promoting the adsorption and activation of benzaldehyde. Consequently, the activated benzaldehyde reacted with amino groups that were decomposed from ammonium carbonate and subsequently underwent a dehydration process to form nitriles.
Palladium-catalyzed synthesis of nitriles from N-phthaloyl hydrazones
Ano, Yusuke,Chatani, Naoto,Higashino, Masaya,Yamada, Yuki
supporting information, p. 3799 - 3802 (2022/04/07)
The Pd-catalyzed transformation of N-phthaloyl hydrazones into nitriles involving the cleavage of an N-N bond is reported. The use of N-heterocyclic carbene as a ligand is essential for the success of the reaction. N-Phthaloyl hydrazones prepared from aromatic aldehydes or cyclobutanones are applicable to this transformation, which gives aryl or alkenyl nitriles, respectively.
Cyanide-Free Cyanation of Aryl Iodides with Nitromethane by Using an Amphiphilic Polymer-Supported Palladium Catalyst
Niimi, Ryoko,Suzuka, Toshimasa,Uozumi, Yasuhiro
supporting information, p. 40 - 44 (2021/11/30)
A cyanide-free aromatic cyanation was developed that uses nitromethane as a cyanide source in water with an amphiphilic polystyrene poly(ethylene glycol) resin-supported palladium catalyst and an alkyl halide (1-iodobutane). The cyanation proceeds through the palladium-catalyzed cross-coupling of an aryl halide with nitromethane, followed by transformation of the resultant (nitromethyl)arene intermediate into a nitrile by 1-iodobutane.
Nickel-Catalyzed Hydrodeoxygenation of Aryl Sulfamates with Alcohols as Mild Reducing Agents
Matsuo, Kasumi,Kuriyama, Masami,Yamamoto, Kosuke,Demizu, Yosuke,Nishida, Koyo,Onomura, Osamu
, p. 4449 - 4460 (2021/08/25)
The nickel-catalyzed hydrodeoxygenation of aryl sulfamates has been developed with alcohols as mild reductants. A variety of functional groups and heterocycles were tolerated in this reaction system to give the desired products in high yields. In addition, the gram-scale process and stepwise cine-substitution were also achieved with high efficiency.
One pot synthesis of aryl nitriles from aromatic aldehydes in a water environment
Chen, Qingqing,Han, Hongwei,Lin, Hongyan,Ma, Xiaopeng,Qi, Jinliang,Wang, Xiaoming,Yang, Yonghua,Zhou, Ziling
, p. 24232 - 24237 (2021/07/29)
In this study, we found a green method to obtain aryl nitriles from aromatic aldehyde in water. This simple process was modified from a conventional method. Compared with those approaches, we used water as the solvent instead of harmful chemical reagents. In this one-pot conversion, we got twenty-five aryl nitriles conveniently with pollution to the environment being minimized. Furthermore, we confirmed the reaction mechanism by capturing the intermediates, aldoximes.
Facile dehydration of primary amides to nitriles catalyzed by lead salts: The anionic ligand matters
Ruan, Shixiang,Ruan, Jiancheng,Chen, Xinzhi,Zhou, Shaodong
, (2020/12/09)
The synthesis of nitrile under mild conditions was achieved via dehydration of primary amide using lead salts as catalyst. The reaction processes were intensified by not only adding surfactant but also continuously removing the only by-product, water from the system. Both aliphatic and aromatic nitriles can be prepared in this manner with moderate to excellent yields. The reaction mechanisms were obtained with high-level quantum chemical calculations, and the crucial role the anionic ligand plays in the transformations were revealed.
Copper-Catalyzed Methoxylation of Aryl Bromides with 9-BBN-OMe
Li, Chen,Song, Zhi-Qiang,Wang, Dong-Hui,Wang, Jing-Ru
supporting information, p. 8450 - 8454 (2021/11/17)
A Cu-catalyzed cross-coupling reaction between aryl bromides and 9-BBN-OMe to provide aryl methyl ethers under mild conditions is reported. The oxalamide ligand BHMPO plays a key role in the transformation. Various functional groups on bromobenzenes are well tolerated, providing the desired anisole products in moderate to high yields.